
ARTIFICIAL IGNORANCE
How To Implement Artificial Ignorance Log Analysis

Marcus Ranum

Page 1 of 3

By request, here's a quick how-to on log scanning via artificial ignorance. :) It assumes UNIX
and the presence of a good grep - you could use other stuff if you wanted to but this is just an
example.

Setting up a filter is a process of constant tuning. First you build a file of common strings that
aren't interesting, and, as new uninteresting things happen, you add them to the file.

I start with a shell command like this:

cd /var/log

cat * | \
 sed -e 's/^.*demo//' -e 's/\[[0-9]*\]//' | \
 sort | uniq -c | \
 sort -r -n > /tmp/xx

In this example "demo" is my laptop's name, and I use it in the sed command to strip out the
leading lines of syslog messages so that I lose the date/timestamps. This means that the
overall variation in the text is reduced considerably. The next argument to sed strips out the
PID from the daemon, another source of text variation. we then sort it, collapse duplicates
into a count, then sort the count numerically.

This yields a file of the frequency with which something shows up in syslog (more or less):

 297 cron: (root) CMD (/usr/bin/at)
 167 sendmail: alias database /etc/aliases.db out of date
 120 ftpd: PORT
 61 lpd: restarted
 48 kernel: wdpi0: transfer size=2048 intr cmd DRQ
 ... etc

In the example on "demo" this reduced 3982 lines of syslog records to 889.

Then what you want to do is trim from BOTH ends of the file and build an "ignore this" list. In
this example, I don't care that cron ran "at" OK so I'd add a regexp like:

cron.*: (root) CMD (/usr/bin/at)

That's a pretty precise one. :)

At the bottom of my file there were about 200 entries that looked like:

 1 ftpd: RETR pic9.jpg
 1 ftpd: RETR pic8.jpg
 1 ftpd: RETR pic7.jpg

ARTIFICIAL IGNORANCE
How To Implement Artificial Ignorance Log Analysis

Marcus Ranum

Page 2 of 3

 1 ftpd: RETR pic6.jpg

Clearly these are highly unique events but also not interesting. So I add patterns that look
like:

ftpd.*: RETR
ftpd.*: STOR
ftpd.*: CWD
ftpd.*: USER
ftpd.*: FTP LOGIN FROM

Now, you apply your stop-list as follows:

cat * | grep -v -f stoplist | \
 sort, etc --

This time I get 744 lines. Putting a pattern in that matches: sendmail.*: .*to=

Drops it down to 120 lines. Just keep doing this and pretty soon you'll have a set of patterns
that make your whole syslog output disappear. You'll notice that in the early example I had a
warning from sendmail because the aliases database was out of date. Rather than putting
a pattern for that, I simply ran newalias. Next time my aliases database is out of date, my log
scanner will tell me.

System reboots are cool, too. My log shows:

 48 kernel: wdc2 at pcmcia0: PCCARD IDE disk controller
 48 kernel: wdc1 at pcmcia0: PCCARD IDE disk controller
 48 kernel: wdc0 at isa0 iobase 0x1f0 irq 14: disk controller
 48 kernel: wd0 at wdc0 drive 0: sec/int=4 2818368*512
 ...

Those will be pretty much static. So I add those exact lines. Now they won't show up
whenever the system boots. BUT I'll get a notification if a new SCSI drive is added, or (I did
this deliberately!):

kernel: fd0c: hard error writing fsbn 1 of 1-19 (fd0 bn 1; cn
kernel: fd0: write protected

Oooh! Some bad boy trying to step on my tripwire file!

Or:

kernel: changing root device to wd1a

..interesting. My pattern was for wd0a!

ARTIFICIAL IGNORANCE
How To Implement Artificial Ignorance Log Analysis

Marcus Ranum

Page 3 of 3

I used to run this kind of stuff on a firewall that I used to manage. One day its hard disk
burned up and my log scan cheerfully found these new messages about bad block
replacement and sent them to me. :) The advantage of this approach is that it's dumb, it's
cheap -- and it catches stuff you don't know about already.

Once you've got your pattern file tuned, put it in cron or whatever, so it runs often. The TIS
Gauntlet has a hack I wrote called "retail" which I can't unfortunately release the code for, but
is easy to implement. Basically, it was like tail but it remembered the offset in the file from the
previous run, and the inode of the file (so it'd detect file shifts) - the trick is to keep one fd
open to the file and seek within it, then stat it every so often to see if the file has grown or
changed inode. If it has, read to EOF, open the new file, and start again. That way you can
chop the end of the log file through a filter every couple seconds with minimal expense in
CPU and disk I/O.

I'm sure there are lots of fun ways this simple trick can be enhanced -- but just in its naive
form I've found it quite useful. I wish I had a program that helped me statistically build my
noise filters, but in general I find it's about a 2 hour job, tops, and it's one you do once and
forget about.

Enjoy!
mjr.

Marcus J. Ranum, CEO, Network Flight Recorder, Inc

